69 resultados para peripheral blood mononuclear cell

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human herpesvirus 6 (HHV-6) like other herpesviruses, expresses sequentially immediate early (IE), early, and late genes during lytic infection. Evidence of ability to establish latent infection has not been available, but by analogy with other herpesviruses it could be expected that IE genes that regulate and transactivate late genes would not be expressed. We report that peripheral blood mononuclear cells of healthy individuals infected with HHV-6 express the U94 gene, transcribed under IE conditions. Transcription of other IE genes (U16/17, U39, U42, U81, U89/90, U91) was not detected. To verify that U94 may play a role in the maintenance of the latent state, we derived lymphoid cell lines that stably expressed U94. HHV-6 was able to infect these cells, but viral replication was restricted. No cytopathic effect developed. Furthermore, viral transcripts were present in the first days postinfection and declined thereafter. A similar decline in the level of intracellular viral DNA also was observed. These findings are consistent with the hypothesis that the U94 gene product of HHV-6 regulates viral gene expression and enables the establishment and/or maintenance of latent infection in lymphoid cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both stem cells and mast cells express c-kit and proliferate after exposure to c-kit ligand. Mutations in c-kit may enhance or interfere with the ability of c-kit receptor to initiate the intracellular pathways resulting in cell proliferation. These observations suggested to us that mastocytosis might in some patients result from mutations in c-kit. cDNA synthesized from peripheral blood mononuclear cells of patients with indolent mastocytosis, mastocytosis with an associated hematologic disorder, aggressive mastocytosis, solitary mastocytoma, and chronic myelomonocytic leukemia unassociated with mastocytosis was thus screened for a mutation of c-kit. This analysis revealed that four of four mastocytosis patients with an associated hematologic disorder with predominantly myelodysplastic features had an A-->T substitution at nt 2468 of c-kit mRNA that causes an Asp-816-->Val substitution. One of one patient examined who had mastocytosis with an associated hematologic disorder had the corresponding mutation in genomic DNA. Identical or similar amino acid substitutions in mast cell lines result in ligand-independent autophosphorylation of the c-kit receptor. This mutation was not identified in the patients within the other disease categories or in 67 of 67 controls. The identification of the point mutation Asp816Val in c-kit in patients with mastocytosis with an associated hematologic disorder provides insight not only into the pathogenesis of this form of mastocytosis but also into how hematopoiesis may become dysregulated and may serve to provide a means of confirming the diagnosis, assessing prognosis, and developing intervention strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously identified a cellular protein kinase activity termed TAK that specifically associates with the HIV types 1 and 2 Tat proteins. TAK hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II in vitro in a manner believed to activate transcription [Herrmann, C. H. & Rice, A. P. (1995) J. Virol. 69, 1612–1620]. We show here that the catalytic subunit of TAK is a known human kinase previously named PITALRE, which is a member of the cyclin-dependent family of proteins. We also show that TAK activity is elevated upon activation of peripheral blood mononuclear cells and peripheral blood lymphocytes and upon differentiation of U1 and U937 promonocytic cell lines to macrophages. Therefore, in HIV-infected individuals TAK may be induced in T cells following activation and in macrophages following differentiation, thus contributing to high levels of viral transcription and the escape from latency of transcriptionally silent proviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin (IL)-18, formerly called interferon γ (IFN-γ)-inducing factor, is biologically and structurally related to IL-1β. A comparison of gene expression, synthesis, and processing of IL-18 with that of IL-1β was made in human peripheral blood mononuclear cells (PBMCs) and in human whole blood. Similar to IL-1β, the precursor for IL-18 requires processing by caspase 1. In PBMCs, mature but not precursor IL-18 induces IFN-γ; in whole human blood stimulated with endotoxin, inhibition of caspase 1 reduces IFN-γ production by an IL-1β-independent mechanism. Unlike the precursor for IL-1β, precursor for IL-18 was expressed constitutively in PBMCs and in fresh whole blood from healthy human donors. Western blotting of endotoxin-stimulated PBMCs revealed processed IL-1β in the supernatants via an caspase 1-dependent pathway. However, in the same supernatants, only unprocessed precursor IL-18 was found. Unexpectedly, precursor IL-18 was found in freshly obtained PBMCs and constitutive IL-18 gene expression was present in whole blood of healthy donors, whereas constitutive IL-1β gene expression is absent. Similar to human PBMCs, mouse spleen cells also constitutively contained the preformed precursor for IL-18 and expressed steady-state IL-18 mRNA, but there was no IL-1β protein and no spontaneous gene expression for IL-1β in these same preparations. We conclude that although IL-18 and IL-1β are likely members of the same family, constitutive gene expression, synthesis, and processing are different for the two cytokines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin 10 (IL-10) is a recently described natural endogenous immunosuppressive cytokine that has been identified in human, murine, and other organisms. Human IL-10 (hIL-10) has high homology with murine IL-10 (mIL-10) as well as with an Epstein–Barr virus genome product BCRFI. This viral IL-10 (vIL-10) shares a number of activities with hIL-10. IL-10 significantly affects chemokine biology, because human IL-10 inhibits chemokine production and is a specific chemotactic factor for CD8+ T cells. It suppresses the ability of CD4+ T cells, but not CD8+ T cells, to migrate in response to IL-8. A nonapeptide (IT9302) with complete homology to a sequence of hIL-10 located in the C-terminal portion (residues 152–160) of the cytokine was found to possess activities that mimic some of those of hIL-10. These are: (i) inhibition of IL-1β-induced IL-8 production by peripheral blood mononuclear cell, (ii) inhibition of spontaneous IL-8 production by cultured human monocytes, (iii) induction of IL-1 receptor antagonistic protein production by human monocytes, (iv) induction of chemotactic migration of CD8+ human T lymphocytes in vitro, (v) desensitization of human CD8+ T cells resulting in an unresponsiveness toward rhIL-10-induced chemotaxis, (vi) suppression of the chemotactic response of CD4+ T human lymphocytes toward IL-8, (vii) induction of IL-4 production by cultured normal human CD4+ T cells, (viii) down-regulation of tumor necrosis factor-α production by CD8+ T cells, and (ix) inhibition of class II major histocompatibility complex antigen expression on IFN-γ-stimulated human monocytes. Another nonapeptide (IT9403) close to the NH2-terminal part of hIL-10 did not reveal cytokine synthesis inhibitory properties, but proved to be a regulator of mast cell proliferation. In conclusion, we have identified two functional domains of IL-10 exerting different IL-10 like activities, an observation that suggests that relatively small segments of these signal proteins are responsible for particular biological functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the role of the immune system in limiting HIV type 1 replication, it is critical to know to what extent the rapid turnover of productively infected cells is caused by viral cytopathicity or by immune-mediated lysis. We show that uncultured peripheral blood mononuclear cells of many patients contain cytotoxic T lymphocytes (CTL) that lyse target cells—at plausible peripheral blood mononuclear cell-to-target ratios—with half-lives of less than 1 day. In 23 patients with CD4 counts ranging from 10 to 900 per μl, the average rate of CTL-mediated lysis corresponds to a target cell half-life of 0.7 day. We develop mathematical models to calculate the turnover rate of infected cells subjected to immune-mediated lysis and viral cytopathicity and to estimate the fraction of cells that are killed by CTL as opposed to virus. The models provide new interpretations of drug treatment dynamics and explain why the observed rate of virus decline is roughly constant for different patients. We conclude that in HIV type 1 infection, CTL-mediated lysis can reduce virus load by limiting virus production, with small effects on the half-life of infected cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we have determined the kinetics of constitutive expression of a panel of cytokines [interleukin (IL) 2, IL-4, IL-6, IL-10, interferon gamma (IFN-gamma), and tumor necrosis factor alpha (TNF-alpha)] in sequential peripheral blood mononuclear cell samples from nine individuals with primary human immunodeficiency virus infection. Expression of IL-2 and IL-4 was barely detected in peripheral blood mononuclear cells. However, substantial levels of IL-2 expression were found in mononuclear cells isolated from lymph node. Expression of IL-6 was detected in only three of nine patients, and IL-6 expression was observed when transition from the acute to the chronic phase had already occurred. Expression of IL-10 and TNF-alpha was consistently observed in all patients tested, and levels of both cytokines were either stable or progressively increased over time. Similar to IL-10 and TNF-alpha, IFN-gamma expression was detected in all patients; however, in five of nine patients, IFN-gamma expression peaked very early during primary infection. The early peak in IFN-gamma expression coincided with oligoclonal expansions of CD8+ T cells in five of six patients, and CD8+ T cells mostly accounted for the expression of this cytokine. These results indicate that high levels of expression of proinflammatory cytokines are associated with primary infection and that the cytokine response during this phase of infection is strongly influenced by oligoclonal expansions of CD8+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vector-based vaccine that secretes the V3 principal neutralizing epitope of human immunodeficiency virus (HIV) could induce immune response to the epitope and prevent the viral infection. By using the Japanese consensus sequence of HIV-1, we successfully constructed chimeric protein secretion vectors by selecting an appropriate insertion site of a carrier protein and established the principal neutralizing determinant (PND)-peptide secretion system in BCG. The recombinant BCG (rBCG)-inoculated guinea pigs were initially screened by delayed-type hypersensitivity (DTH) skin reactions to the PND peptide, followed by passive transfer of the DTH by the systemic route. Further, immunization of mice with the rBCG resulted in induction of cytotoxic T lymphocytes. The guinea pig immune antisera showed elevated titers to the PND peptide and neutralized HIVMN, and administration of serum IgG from the vaccinated guinea pigs was effective in completely blocking the HIV infection in thymus/liver transplanted severe combined immunodeficiency (SCID)/hu or SCID/PBL mice. In addition, the immune serum IgG was shown to neutralize primary field isolates of HIV that match the neutralizing sequence motif by a peripheral blood mononuclear cell-based virus neutralization assay. The data support the idea that the antigen-secreting rBCG system can be used as a tool for development of HIV vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peripheral blood lymphocytes (PBLs) are an important target for gene transfer studies aimed at human gene therapy. However, no reproducibly efficient methods are currently available to transfer foreign, potentially therapeutic genes into these cells. While vectors derived from murine retroviruses have been the most widely used system, their low infection efficiency in lymphocytes has required prolonged in vitro culturing and selection after infection to obtain useful numbers of genetically modified cells. We previously reported that retroviral vectors pseudotyped with vesicular stomatitis G glycoprotein (VSV-G) envelope can infect a wide variety of cell types and can be concentrated to titers of greater than 10(9) infectious units/ml. In this present study, we examined the ability of amphotropic and pseudotyped vectors expressing a murine cell surface protein, B7-1, to infect the human T-cell line Jurkat or human blood lymphocytes. Limiting dilution analysis of transduced Jurkat cells demonstrated that the pseudotyped vector is significantly more efficient in infecting T cells than an amphotropic vector used at the same multiplicity of infection (moi). To identify the transduction efficiency on PBLs, we examined the levels of cell surface expression of the B7-1 surface marker 48 to 72 hr after infection. The transduction efficiency of PBLs with the pseudotyped vector increased linearly with increasing moi to a maximum of approximately 16-32% at an moi of 40. This relatively high efficiency of infection of a T-cell line and of blood lymphocytes with VSV-G pseudotyped virus demonstrates that such modified pseudotyped retrovirus vectors may be useful reagents for studies of gene therapy for a variety of genetic or neoplastic disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quinolinate (Quin), a metabolite in the kynurenine pathway of tryptophan degradation and a neurotoxin that appears to act through the N-methyl-D-aspartate receptor system, was localized in cultured human peripheral blood monocytes/macrophages (PBMOs) by using a recently developed immunocytochemical method. Quin immunoreactivity (Quin-IR) was increased in gamma interferon (IFN-gamma)-stimulated monocytes/macrophages (MOs). In addition, the precursors, tryptophan and kynurenine, significantly increased Quin-IR. Infection of MOs by human T-cell lymphotropic virus type I (HTLV-I) in vitro substantially increased both the number of Quin-IR cells and the intensity of Quin-IR. At the peak of the Quin-IR response, about 40% of the cells were Quin-IR positive. In contrast, only about 2-5% of the cells were positive for HTLV-I, as detected by both immunofluorescence for the HTLV-I antigens and PCR techniques for the HTLV-I Tax gene. These results suggest that HTLV-I-induced Quin production in MOs occurs by an indirect mechanism, perhaps via cytokines produced by the infection but not directly by the virus infection per se. The significance of these findings to the neuropathology of HTLV-I infection is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ) induced human CD4+ and CD8+ T cells and macrophages to more extensivley infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are developing a gene therapy method of HIV infection based on the constitutive low production of interferon (IFN) β. Peripheral blood lymphocytes (PBL) from HIV-infected patients at different clinical stages of infection were efficiently transduced with the HMB-HbHuIFNβ retroviral vector. The constitutive low production of IFN-β in cultured PBL from HIV-infected patients resulted in a decreased viral production and an enhanced survival of CD4+ cells, and this protective effect was observed only in the PBL derived from donors having a CD4+ cell count above 200 per mm3. In IFN-β-transduced PBL from healthy and from HIV-infected donors, the production of the Th1-type cytokines IFN-γ and interleukin (IL)-12 was enhanced. In IFN-β-transduced PBL from HIV-infected donors, the production of IL-4, IL-6, IL-10, and tumor necrosis factor α was maintained at normal levels, contrary to the increased levels produced by the untransduced PBL. The proliferative response to recall antigens was partially restored in IFN-β-transduced PBL from donors with an impaired antigen response. Thus, in addition to inhibiting HIV replication, IFN-β transduction of PBL from HIV-infected donors improves several parameters of immune function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the protective role of the membrane-bound HLA-G1 and HLA-G2 isoforms against natural killer (NK) cell cytotoxicity. For this purpose, HLA-G1 and HLA-G2 cDNAs were transfected into the HLA class I-negative human K562 cell line, a known reference target for NK lysis. The HLA-G1 protein, encoded by a full-length mRNA, presents a structure similar to that of classical HLA class I antigens. The HLA-G2 protein, deduced from an alternatively spliced transcript, consists of the α1 domain linked to the α3 domain. In this study we demonstrate that (i) HLA-G2 is present at the cell surface as a truncated class I molecule associated with β2-microglobulin; (ii) NK cytolysis, observed in peripheral blood mononuclear cells and in polyclonal CD3− CD16+ CD56+ NK cells obtained from 20 donors, is inhibited by both HLA-G1 and HLA-G2; this HLA-G-mediated inhibition is reversed by blocking HLA-G with a specific mAb; this led us to the conjecture that HLA-G is the public ligand for NK inhibitory receptors (NKIR) present in all individuals; (iii) the α1 domain common to HLA-G1 and HLA-G2 could mediate this protection from NK lysis; and (iv) when transfected into the K562 cell line, both HLA-G1 and HLA-G2 abolish lysis by the T cell leukemia NK-like YT2C2 clone due to interaction between the HLA-G isoform on the target cell surface and a membrane receptor on YT2C2. Because NKIR1 and NKIR2, known to interact with HLA-G, were undetectable on YT2C2, we conclude that a yet-unknown specific receptor for HLA-G1 and HLA-G2 is present on these cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As well as inducing a protective immune response against reinfection, acute measles is associated with a marked suppression of immune functions against superinfecting agents and recall antigens, and this association is the major cause of the current high morbidity and mortality rate associated with measles virus (MV) infections. Dendritic cells (DCs) are antigen-presenting cells crucially involved in the initiation of primary and secondary immune responses, so we set out to define the interaction of MV with these cells. We found that both mature and precursor human DCs generated from peripheral blood monocytic cells express the major MV protein receptor CD46 and are highly susceptible to infection with both MV vaccine (ED) and wild-type (WTF) strains, albeit with different kinetics. Except for the down-regulation of CD46, the expression pattern of functionally important surface antigens on mature DCs was not markedly altered after MV infection. However, precursor DCs up-regulated HLA-DR, CD83, and CD86 within 24 h of WTF infection and 72 h after ED infection, indicating their functional maturation. In addition, interleukin 12 synthesis was markedly enhanced after both ED and WTF infection in DCs. On the other hand, MV-infected DCs strongly interfered with mitogen-dependent proliferation of freshly isolated peripheral blood lymphocytes in vitro. These data indicate that the differentiation of effector functions of DCs is not impaired but rather is stimulated by MV infection. Yet, mature, activated DCs expressing MV surface antigens do give a negative signal to inhibit lymphocyte proliferation and thus contribute to MV-induced immunosuppression.